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The linearized stability problem for steady, cellular convection resulting from 
gradients in surface tension is examined in some detail. Earlier work by Pearson 
(1958) and Sternling & Scriven (1959, 1964) has been extended by considering 
the effect of gravity waves. In  order to avoid the use of an assumed coupling 
mechanism at the interface, the relevant dynamical equations were retained for 
both phases. It is shown that the existence of a critical Marangoni number is 
assured, and that for many situations this critical value is essentially that which 
is appropriate to the case of a non-deformable interface. Usually, surface waves 
are important only at very small wave-numbers, but they are dominant for 
unusually thin layers of very viscous liquids. 

1. Introduction 
The importance of surface-tension gradients as a cause of convective instability 

has now been so well established (Pearson 1958; Sternling & Scriven 1959; 
Scriven & Sternling 1964) that further discussion of this point is probably 
unnecessary. A striking illustration of its importance is the fact that the regular 
cellular convection observed by BBnard (1900,1901) was almost certainly due to 
gradients in surface tensionrather than to buoyancy forces, as originally supposed. 
Many observations such as B6nard’s may be interpreted with the aid of existing 
analyses, but each analysis suffers from at least one deficiency. 

The pioneering work of Pearson (1958) was motivated by the observation that 
drying paint films often exhibit an organized cellular motion which cannot be 
explained by buoyancy effects. In order to model this situation, Pearson assumed 
that the interface did not deform in the direction normal to itself, that the 
boundary condition on the free surface was that of constant heat-transfer 
coefficient, and that the air phase was essentially inviscid. The possibility of 
oscillatory instability was not considered. The results indicated the existence of 
a critical ‘Marangoni number’ of about 80 at a wave-number (made dimension- 
less with respect to film depth) of about 2.0. If the surface tension decreases with 
increasing temperature, then the liquid film is unstable only if i t  is heated from 
below; but, for the very unusual case in which surface tension increases with 
temperature, the heating must be from above. 

The independent investigation of Sternling & Scriven (1959) was an attempt to 
understand similar effects that occur when mass is transferred across an interface 
between two immiscible liquid phases. Since the diffusion equations are the same 
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for heat and for material transport, and since surface tension depends on con- 
centration as well as temperature, it follows that the underlying problem is 
essentially the same as Pearson’s. However, it  is obviously not possible to 
neglect the dynamics of either liquid phase. Therefore, in order to simplify the 
problem, it was assumed that both phases were infinitely deep and that the 
interface did not deform in the direction normal to itself. On the other hand, the 
effect of surface viscosity was included, and the oscillatory modes were con- 
sidered. Depending on the fluid properties and the direction of transfer, this 
model was either stable to all wave-numbers or unstable to a band of wave- 
numbers, and much of the analysis was devoted to determining those modes with 
the largest growth rates. If the solute diffusivity and the kinematic viscosity 
were both lower for one phase than for the other, instability was predicted for 
transfer in either direction. 

Scriven & Sternling (1964) later returned to the problem first considered by 
Pearson, pointing out that certain observations did not seem to be compatible 
with Pearson’s results. In  their modification, the additional effects of surface 
viscosity were included. The surface was considered deformable and capillary 
waves were permitted, but gravity waves were not. The results showed that 
disturbances with zero wave-number were always unstable and hence that no 
critical Marangoni number existed. At higher wave-numbers, the solution for 
low values of the ‘crispation group’ (see end of $ 2  for definition) was similar 
to Pearson’s result, but for larger values of the crispation group the character of 
the solution was entirely different. In all cases, instability was possible for 
transfer in one direction only, as was found by Pearson. In a footnote, the authors 
indicate that Brooke Benjamin had pointed out to them that, for upward facing 
films, disturbances of zero wave-number would be stabilized by the action of 
gravity. 

In  sum, then, the best existing model of thin film behaviour shows an anomaly 
at zero wave-number and this difficulty is probably associated with the neglect 
of gravity waves. In  contradiction with some experiments, this model also fails 
to show the possibility of instability to transfer in both directions. By contrast, 
the sole existing analysis for mass transfer between two liquid phases proceeds 
on rather different grounds and fails to show any critical condition for the onset 
of the instability. Yet this model can exhibit instability to transfer in either 
direction. In  what follows, both physical problems are brought within the frame- 
work of the same theoretical analysis and some of these difficulties are resolved. 

2. Mathematics 
For simplicity, the problem is formulated in terms of steady, one-dimensional 

heat transfer between two fluid phases separated by a horizontal interface. Thus 
the unperturbed state is one of no motion, and within each phase the temperature 
varies linearly in the vertical direction. It is assumed that surface tension is the 
only physical property which varies with temperature. A linearized, normal- 
mode analysis is then employed to determine the state of marginal stability, but 
oscillatory modes are not considered. 
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The z-axis is taken to be in the vertical direction, so that the (x,y)-plane 
coincides with the mean position of the interfaces. Then, if u, v, w are the velocity 
components in the directions x, y, z ,  the linearized equations of motion become 

v = V(z )  exp (ik, x + ik, y + nt), 

p = P(z)exp(ik,x+ik,y+nt), 

w = W(z)  exp (ikz x+ ik,  y + nt), 

where all quantities represent perturbations from the state of rest. Similarly, the 
continuity equation becomes 

(6) 

au av aw -+-+- = 0, 
ax ay az 

while the energy equation is 
aeiat = - pw + K v 2 8 ,  

(4) 

equation reduce to 

and (9) 

The real part of n is set equal to zero because the purpose of this analysis is to 
consider those marginal disturbances which are neither amplified nor damped. 
For oscillatory disturbances of this kind, the imaginary part of n will not vanish 
and this paper is therefore restricted to a consideration of the stationary modes. 

Let W, and 0, be the solutions to these equations which are appropriate to the 
upper phase, and let Wl and 0, be the solutions for the lower phase. These are 
coupled to each other by the boundary conditions at the interface, which require 
continuity of velocity, temperature, and heat flux. Newton's third law places 
constraints on the tangential and normal stresses. Strictly, all of these conditions 
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are to be applied at x = 5; but since c,, is a small quantity, they may be applied at 
x = 0 consistently with the overall linearized approximation, together with a 
first-order correction in 5 if any should be needed. For instance, the interfacial 
temperature can be written 

6, = 4, z=o + PI 5. (10) 

Continuity of velocity requires that 

but we have 

so that nCo = W.  

For n = 0, (1 1 a) and (1 1 b)  obviously require 

w, = rv,, 
ayat  = nC = w, 

Also 

From equation (4)) these lead to 

dW,ldX = dWz/dz. 

For continuity of temperature, we must take 

(1Sb) 

and for continuity of heat flux 
dO,  dO 

k, ~ = k, -2 dz dz 
But, in the unperturbed state, 

klP1 = kzPz; 

hence 

For tangential stress, the surface divergence of the continuity condition is 

(15.a) 

where v is the surface tension. Let u vary in accordance with 

CT = Vo(l  -€6) .  (15.b) 

Effects of surface viscosity and surface elasticity are not considered. With the 
surface temperature as given by equation (lo), it follows that 

Finally, for the normal stress 

In  combination with the foregoing equations, this yields 
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The specification of the problem is completed by assuming that both phases are 
bounded by perfectly conducting rigid surfaces. Thus, at x = d, 

0, = 0, 

w, = 0, 

dH?Jdz = 0. 

0, = 0, 

w1 = 0, 

awl/az = 0. 

and since U, = V, = 0, by continuity 

Similarly, at z = -d, 

The characteristic-value problem is now well posed and is seen to be simple in 
principle. Its solution proceeds in the usual tedious manner, leading to the 
following 

where 
(1  - ( l/g2) sinh2E) sinh 6 

”(‘) = coshc - (lip) sinh3 6 ’ 

( 1 - (115) sinh ( cosh 5) cosh 5 
”(‘) = cosh E - (1/[)3 sinha ’ 

1 - ( 1 /t2) sinh2 5 

cosh 6 sinh2 E 
’(‘) = 1 - (l/$) sinh 6 cosh E ’  

G1(6) = cosh E - (l/p) sinh3 [ ’ 

Of the dimensionless groups, NM is the Marangoni number, NcR has been named 
the crispation group by Scriven & Sternling (1964), and N, is that group which 
occurs so frequently in problems involving both gravity waves and capillary 
ripples. Some authors refer to this last group as the Weber number. Specifically 
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If the upper phase is of infinite depth, as in the case examined by Pearson, then 
equation (23) becomes 

[ l + ~ k d , & ( k d , )  Pl 

3. Discussion Physical interpretation 

The formal process carried out above is roughly equivalent to posing and 
answering the following question : ' If mutually compatible temperature and 
velocity perturbations are introduced, then what must be the size and magnitude 
of p if these disturbances are to be maintained by the resulting perturbation in 
the tangential stress? ' In  short, equation (15c) is the key boundary condition. 
For this reason, the final results, equations (23) and (24), are given in a form 
which exactly parallels equation (15c). The first two terms on the left-hand side 
are proportional to the temperature perturbation at x = 0; i.e. if P, = p2, then 
they represent the net effect of convection and diffusion. The third term is pro- 
portional to p, c,, and is due solely to the action of surface waves. The right-hand 
side is obviously proportional to the sum of the viscous tractions which are 
applied to the interface. In  order to examine the relative importance of these 
processes, it is convenient to examine the limiting cases of very short wavelengths 
and of very long wavelengths; that is, kd, -+ 00 and kd, -+ 0. 

Large wave-number 

For kd, --f co, equations (23) and (24) take the same form 

and 

where V ,  is an arbitrary scale velocity. Since kd, --f 03 states that the transverse 
scale of the disturbance is very much less than the fluid depth, both phases are 
effectively infinitely deep. It may be surprising, therefore, that d, appears in 
each of the above equations. However, the definition of N,,is such that d, appears 
to the same power on both sides of equation (25). Similarly, in equation (26) the 
role of d, is one of units alone and results from using a scale velocity rather than an 
arbitrary time scale. As expected, equation (25) is equivalent to the condition 
obtained by Sternling & Scriven (1959) for the existence of a stationary marginal 
disturbance when both phases are infinitely deep, except that surface viscosity 
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is not considered here and the notation is rather different. In  this limit, energy 
transfer is largely by convection and lateral diffusion, diffusion in the direction 
normal to the interface being of secondary importance. Since convection is 
absent a t  the interface (w = 0 at z = 0), it  follows that the temperature perturba- 
tion at z = 0 must be associated with this secondary effect. Hence, as shown above, 
the temperature perturbation a t  the interface varies as (kdJ-2 and is therefore 
two orders of magnitude smaller than the temperature perturbations occurring 
in the bulk of either phase. Even then, it depends on the asymmetry introduced 
via the difference in the thermal diffusivities. 

As shown by Scriven & Sternling (1964), surface deformation plays no role 
whatsoever in this limit. For comparison with the limiting forms given in 
equation ( 2 6 ) ,  the wave amplitude is given below 

Small wave-number, both phases of Jinite depth 

By contrast, for kd, + 0, the effects of depth are paramount, and equations (23) 
and (24) do not lead to the same result. For the case in which both phases are of 
finite depth, a first-order approximation to each term in equation (23) leads to 

Clearly, in the strict limit as kd, + 0,  the waves are of the gravity type (Nc,/NG 
does not contain cr) and they are of overwhelming importance. The corresponding 
forms for the temperature perturbation and for the wave amplitude are 

The temperature profiles are due solely to the waves, and are those simple 
solutions of the one-dimensional conduction equation which are required to 
maintain continuity of temperature and of heat flux at the interface. The situa- 
tion is most clearly visualized when p, = P2 = p so that 

0, = 0, = 0. 

Then the variation in temperature along the interface is simply 

0, -+ P6. (30) 

On the other hand, the value of N&/NG may be so small as to make the third 
term of equation (28) unimportant at any wave-number of sufficient magnitude 
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to be of interest. In  this event, convection and diffusion are again of major 
significance and these processes are greatly altered by the relative depth. If NCR 
is set equal to zero for definiteness, then the appropriate limiting forms are 

2 3 -+ 1 E (4 + 1) (kd,),,  

- -+ -- (- - 1) (kd1)27 

K 3d1  dl 
1% 122 22 2 

K 3 d 1  d2 

1 

(31 )  +: [(t)3+: (i)2+:- 11) (kdl) ,Q,  va 
K1 

In  this case, diffusion in the direction normal to the interface is a first-order 
process with both convection and diffusion depending on the ratio d2/dl,  so that 
the significant grouping is (y- 1. 

Unlike the situation for kd, --f 00, the temperature perturbation here increases 
with kd, and a minimum for N,, may therefore be expected in the neighbourhood 
of kd, = 1 (at least if NCR = 0). 

Small wave-number, upper phase infinitely deep 
In  the event that d2 = co, only the lower phase has a prescribed length scale. 
In  the two limiting cases considered above, length scales were prescribed for both 
phases or for neither phase; so the present case should exhibit some of the features 
contained in each of the above. Using a fist-order approximation to each term in 
equation (24)  leads to 

1 NJ1[(kd1)3-B3+120* K = 80. 

K2 NG 

The perturbation quantities are given by 

1 2  z 2 
-+ -- (-+ 1) (lid1),, 

- -+ - - {exp ( - kz ) }  (kd1)27 

v, 3 4  dl 
w, 1 z 

V ,  3d1  

} (33) 
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In  agreement with the postulate that this result would be a mixture of previous 
results, both convection and surface waves are found to be effective in causing 
a temperature perturbation in the upper phase, and this is reflected in the 
equation for the neutral curve. The lower phase is passive and merely responds 
to the temperature perturbation imposed on the interface by convection in the 
upper phase. Hence, the detailed dynamics of the upper phase may never be 
ignored at very small wave-numbers. 

For many practical cases in which d, = m, N,,/NG and KJK, are extremely 
small, so equation (33) is of little interest a t  reasonable wave-numbers. If both 
of these parameters are set identically equal to zero, the temperature perturba- 
tions for kd, -+ 0 are 

0, 1 V d  
__ -+ - {exp ( - kz) )  (kd1)2 S l .  

Pldl 60 K1 

In  this case, the temperature perturbation is associated with convection in the 
lower phase and the upper phase is passive. Similarly, for ledl 3 co, an examina- 
tion of equation (26) shows that the temperature perturbation in the upper phase 
is again passive if K , / K ~  < 1. Behaviour of this sort is implied by Pearson (1958) 
and by Scriven & Sternling (1964) in their use of a heat-transfer coefficient a t  the 
interface. These results show that the assumption is likely to be quite adequate, 
provided that very small wave-numbers are of no interest, that K , / K ~  < 1, and 
that NCR/NO < 1. 

Further comments on surfuce waves 
Scriven & Sternling (1964) point out that if Q and (dWl/dz),=, have the same sign, 
then there is an upflow under depressions in the interface and a downflow beneath 
elevations. They further showed that within the confines of their analysis, the 
upflow is always beneath the depressions if the instability is driven by surface- 
tension gradients. Since the opposite is true for instabilities driven by buoyancy 
forces, this provides a simple experimental criterion for distinguishing between 
the two. For the analysis employed here, a convenient non-dimensional form of 
this criterion is 

= (2/&,sinh2kdl- 1 ) - ( 2- z:/(Ki2)2sinh2kd2-l - 

When d, = co, the second term on the right vanishes and the left-hand side is then 
positive definite. Thus, the result of Scriven & Sternling is unchanged by the 
inclusion of gravity waves, provided that 

If d, and d, are both finite, a simple criterion is not generally possible; but since 
the right-hand side can have no more than one zero, a sufficient condition may be 
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determined by examining the extremities k -+ 0 and k --f co. This approach shows 
that the sign is determined by the following groups 

If both of these are positive, there is an upflow beneath surface depressions and, 
similarly, the upflow is beneath elevations if both are negative; again provided 
that 

otherwise the result is reversed. If one is positive and the other negative, 
equation (35) must be evaluated at the wave-number of interest. 

The role of waves on inclined or inverted surfaces deserves special mention. 
If  in all of the preceding equations, g is replaced by g cos q5, where q5 is defined by 
- 2 . k  = gcosq5 (k is the unit vector in the z direction) then these cases are 
formally included. However, on inclined surfaces there exists a mean flow in the 
unperturbed state and the above analysis is likely to fail unless 

- 
u d  
- k d g  1 and z k d <  1, 

V K 

where is a velocity scale appropriate to the mean flow. Commonly, the phase 
adjacent to the surface will be rather viscous compared with the other phase and 
the constraints become 

and 

Another aspect is presented when NG < 0, as would occur on inverted surfaces. 
In  this case, equation (23) would seem to imply that Rayleigh-Taylor instability 
can be stabilized by the Marangoni effect, but this conclusion is unwarranted. 
The Rayleigh-Taylor problem is singular a t  the marginal condition n = 0. Thus 
the analysis describes the effect of gravity on stationary marginal instability 
driven by surface-tension gradients, but it contains no information with regard 
to the effect of surface-tension gradients upon gravitational instability. This 
provides an explanation for the manner in which N, enters equation (23); namely 
that at large absolute values of N,, the wave amplitude must be small if a marginal 
state is to exist. It does not deny the possibility of instability by another 
mechanism. 

Finally, it is apparent that surface waves will not always play a significant role 
and it would be useful to have a criterion by which these cases could be recognized. 
This matter involves both the sign (direction of transfer) and the magnitude of 
the Marangoni number as separate matters, and there seems to be no simpler 
procedure than judicious use of the limiting formulae given above. 

((g sin q5) d3/v2} ( k d )  < 1 {(g sin q5) d 3 / u ~ }  ( k d )  < 1. 

4. Numerical computations for sample cases 
First consider a thin liquid layer which is horizontal and exposed to the 

atmosphere. The stability characteristics are governed by equation (24) which 
requires specification of five parameters. Values for four common liquids in 
contact with air at 20°C are given in table 1. It is assumed that the liquid is 
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0.05 em deep. Evidently, those terms of equation (28) which are connected with 
the quantities in the last three columns will play quite unimportant roles. By 
contrast, the importance of the term containing NcR and N, will vary widely; the 

NCR NG KIlKZ /%/PI PJP, 
Water 4 x  10-6 0.03 0.007 2 x 10-2 0.04 
Mercury 3~ 10-5 0.07 0.2 1 x 10-2 0.003 

Silicone oil* 1.0 0.11 0.005 2 x 10-7 0.16 
Glycerin 4 x 10-3 0.05 0.005 1 x 10-5 0.09 

* p = 100,000 cp. 

TABLE 1 

10' 

103 

c I 1 \ T  

10' 

0.1 1 .0 10 
kd, 

FIGURE 1. Neutral stability curves, upper phase infinitely deep. 

wave phenomena being most important for very thin layers of very viscous 
liquids. For definiteness, figure 1 is based on 

p21pl = pzlpl = 0, Kl /KZ  = 0.005, NG = 0.05. 

The values of Ncn are given in the figure. If NCR = 0, the results reproduce 
Pearson's conclusion that the critical value of the Marangoni number is about 
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NM 102 

10' 

t .- 

0.1 1 *o 10 
kd, 

102 

( b )  
FIG~RE 2. Neutral stability curves: (a)  Positive half-plane, both phases 

finite; ( b )  negative half-plane, both phases finite. 
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80 and that it occurs at  a wave-number of approximately 2.0. However, the 
very low wave-number portion of the curve lies in the negative half-plane and 
is not shown. This behaviour indicates that with liquids of low viscosity (and 
K ~ / K ~  > 0 )  instability is possible for transfer in either direction. For larger values 
of NcR ( > 10-5 in this case) surface waves become dominant at  low values of kd, 
and the neutral curve lies entirely in the positive half-plane. At still higher values 
of NcR, the entire character of the results begins to change and for NCR = 
the minimum is extremely shallow. In this situation) classical excitation of the 
‘most unstable mode’ is extremely unlikely. However) it should be noted that 
for many physical situations, the approximation NcR = 0 is quite adequate for 
determining the critical value of NM. 

A rather different situation exists when the depth and properties of the two 
phases are similar. Let 

A comparison of the limiting forms contained in equations (25)  and (28) shows 
that for this choice of values, N,, is positive for kd,  --f 00; but for kd, --f 0,  N,, 
is negative if NcE = 0 and positive if Ncn + 0. Obviously, the temperature 
perturbation caused by convection and diffusion at  low wave-numbers is out of 
phase with the perturbations which result from the other two limiting cases. 
Again then, instability is a possibility for transfer in either direction. For any 
particular value of NcR, the full neutral curve is given by equation (23). The 
positive half-plane is shown in figure 3 (a )  and the negative half plane is given in 
figure 2 (b ) ;  this awkward device being necessitated by the use of logarithmic 
plotting. 

For NCR = 0, surface waves do not occur and only two mechanisms are 
operative) leading to one curve in each half plane, as shown. For NcR = loh4, 
all three mechanisms are significant. At very low wave-numbers, surface waves 
are dominant and lead to positive values of NM. At somewhat higher wave- 
numbers, there remains a curve in the lower half-plane; but it is somewhat 
modified by the effects of surface deformation. At still higher wave-numbers, the 
result for NcR = 0 is essentially unchanged. Finally, for NCR = the entire 
behaviour is profoundly influenced by surface waves, the minimum is very 
shallow, and instability is possible only with positive values of Nal. 

5. Conclusion 
The above analysis achieves the objectives set for it in the introduction and 

provides numerical results which are broadly consistent with experimental 
observations. However) the oscillatory modes have not been considered and 
their role may be significant) particularly with regard to the question of instability 
for transfer in either direction. 

This work was performed during a visit to the Cavendish Laboratory at the 
University of Cambridge. This visit was made possible by a one-year leave of 
absence and a fellowship grant from the National Science Foundation. The author 
is especially grateful to Dr A. A. Townsend for his helpful suggestions. 
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